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Abstract. Many European countries mainly rely on groundwater for domestic water use. Due to a scarcity of near real-time 

water table depth (wtd) observations, establishing a spatially consistent groundwater monitoring system at the continental 

scale is a challenge. Hence, it is necessary to develop alternative methods to estimate wtd anomalies (wtda) using other 

hydrometeorological observations routinely available near real-time. In this work, we explore the potential of Long Short-10 

Term Memory (LSTM) networks to produce monthly wtda, using monthly precipitation anomalies (pra) as input. LSTM 

networks are a special category of artificial neural networks, useful in detecting a long-term dependency within sequences, in 

our case time series, which is expected in the relationship between pra and wtda. To set up the methodology, spatio-

temporally continuous data were obtained from daily terrestrial simulations (hereafter termed the TSMP-G2A data set) with 

a spatial resolution of 0.11°, ranging from the year 1996 to 2016. They were separated into a training set (1996-2012), a 15 

validation set (2013-2014), and a test set (2015-2016) to establish local networks at selected pixels across Europe. The 

modeled wtda maps from LSTM networks agreed well with TSMP-G2A wtda maps in 2003 and 2015 constituting drought 

years over Europe. Moreover, we categorized test performances of the networks based on yearly averaged wtd, 

evapotranspiration (ET), soil moisture (θ), snow water equivalent (Sw), and soil type (St) and dominant plant functional type 

(PFT). Superior test performance was found at the pixels with wtd < 3 m, ET > 200 mm, θ > 0.15 m3m-3 and Sw < 10 mm, 20 

revealing a significant impact of the local factors on the ability of the networks to process information. Furthermore, results 

of cross-wavelet transform (XWT) showed a change in the temporal pattern between TSMP-G2A pra and wtda at some 

selected pixels, which can be a reason for undesired network behavior. Our results demonstrate that LSTM networks are 

useful to produce high-quality wtda based on other hydrometeorological data measured and predicted at large scales, such as 

pr. This contribution may facilitate the establishment of an effective groundwater monitoring system over Europe relevant to 25 

water management. 

1 Introduction 

Groundwater is an essential natural resource, accounting for about 30% of the fresh water on Earth (Perlman, 2013) and 

sustains various domestic, agricultural, industrial and environmental uses, due to its widespread availability and limited 
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vulnerability to pollution (Naghibi et al., 2016; Tian et al., 2016). According to the report of the European Environment 30 

Agency (EEA) in 1999, groundwater comprises over 50% of public water supply in most European countries. Groundwater 

systems are dynamic and adapt continuously to natural and anthropogenic stresses (Kenda et al., 2018). However, they are 

affected in recent years as a consequence of frequent extreme weather conditions, e.g., severe droughts and human 

overexploitation. Thus, effective and efficient groundwater management, especially under drought conditions, is required at 

the European scale to maintain environmental and socioeconomic sustainability. 35 

Drought is characterized as the costliest natural hazard worldwide, resulting in significant societal, economic, and 

ecological impacts (Wilhite, 2000). The report of the EEA in 2016 demonstrated that drought had become a recurrent feature 

of the European climate, and more droughts have occurred in some European countries than in the past, and their severity 

has also been increased. Recent severe heatwave events in Europe occurred in 2003, 2015, and 2018, which lead to several 

drought events covering most of the European continent (Norris, 2018). Groundwater drought is a specific type of drought, 40 

impacting several important drought-sensitive sectors such as drinking water supply and irrigation (Van Loon et al., 2017). 

Hence, groundwater monitoring is ultimately indispensable over the European continent.  

Effective groundwater monitoring requires accurate information on groundwater dynamics in space and time. One crucial 

variable for characterizing groundwater dynamics is water table depth anomaly (wtda), reflecting anomalies in groundwater 

storage (Zhao et al., 2020), which is a key variable in groundwater drought analysis. wtda is derived from wtd observations, 45 

which are measured directly from observation wells. However, to date, there is still a challenge to obtain near real-time 

spatially continuous wtd observations over Europe (Van Loon et al., 2017; Bloomfield et al., 2018), and available data sets 

often suffer from uncertainties originating from unknown well-bore and well installation specifics. Therefore, an alternative 

(indirect) method is needed for producing reliable area-wide wtda information over Europe. 

Indirect methods rely on measurements of one or more hydrometeorological variables related to wtd via physical processes 50 

in the water cycle, such as infiltration and percolation. Information regarding precipitation anomaly (pra) is the most 

common variable used to model wtda. Precipitation (pr) is mostly connected with groundwater via the process of percolation 

through soil layers. Thus, depending on evapotranspiration (ET) and the thickness of the vadose zone, a lag exists in the 

response of groundwater to pr. A considerable number of studies linked the accumulation of pra over extended time scales 

(e.g., 6 or 12 months) to wtda, often applying the Standardized Precipitation Index (SPI) and the Standardized Precipitation 55 

Evapotranspiration Index (SPEI) to represent wtda (e.g., SPI: McKee et al., 1993; Thomas et al., 2015; SPEI: Vicente-

Serrano et al., 2010; Van Loon et al., 2017). In these studies, equal weights were assigned to the meteorological input in the 

derivation of the drought indices.   

As an alternative, artificial neural networks (ANNs) are able to account for non-uniformly weighted, temporally lagged 

contributions of pra to wtda, potentially providing more robust prediction models. ANNs are one of the most widely used 60 

machine learning methods that have been inspired by biological neural systems, having many interconnected information-

processing units (i.e., neurons) (Haykin, 2009; Ma et al., 2019). By adapting learnable parameters (i.e., weights and biases) 

on the links between neurons, ANNs can give an appropriate input-output mapping based on observed data even for complex 
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nonlinear relationships. ANNs are not easily affected by input noise and able to readjust their parameters when new 

information is included. More importantly, compared to physically-based models, they necessitate little background 65 

knowledge, reducing the requirements for human involvement and expertise, and thus, enabling rapid hypothesis testing 

(Govindaraju, 2000; Shen, 2018; Sun and Scanlon, 2019).  

Recurrent neural networks (RNNs) are mainly designed for sequential data analysis. Through loops in their hidden layers, 

the information generated in the past flows back to neurons as the input of new computing processes (Karim and Rivera, 

1992). Due to the ability to store information traveling through, RNNs can more efficiently solve sequential data problems 70 

such as groundwater level estimation than feedforward networks and their variants. The latter are commonly used ANNs for 

groundwater level modeling in previous studies, e.g., Yang et al. (1997), Nayak et al. (2006), Adamowski and Chan (2011), 

Yoon et al. (2011), Gong et al. (2015), Mohanty et al. (2015), Sun et al. (2016). With RNNs, it is not necessary to estimate 

the delay time d (d > 0) in the network response in advance and to assign one input variable to several input neurons 

(namely, the input data at the time steps t, t – 1, …, t - d + 1) during modeling like it is with feedforward networks (J. Zhang 75 

et al., 2018; Supreetha et al., 2020). 

Long Short-Term Memory (LSTM) networks are a special type of RNNs and famous because of their superior 

performance in exploiting long-term dependencies between sequences, which is expected in the response of wtd to pr. 

Although LSTM networks have been employed extensively in other science fields, particularly natural language processing 

(D. Zhang et al., 2018), their application in hydrology is still in its infancy and has only recently received increasing 80 

attention (e.g., Kratzert et al., 2018; Shen, 2018; J. Zhang et al., 2018; Le et al., 2019; Sahoo et al., 2019). Thus, limited 

studies have been conducted to estimate groundwater fluctuations using LSTM networks.  

The consistency of the temporal pattern between input and target variables is a prerequisite for the good performance of 

ANNs, including LSTM networks. Cross-wavelet transform (XWT) is a useful tool to visualize the pattern changes between 

input and target variables, aiming to extract similarities of two time series in time and frequency. The technique has been 85 

applied for time-frequency analysis in many publications, e.g., Adamowski (2008), Prokoph and El Bilali (2008) and 

Banerjee and Mitra (2014).  

In this study, we utilized spatio-temporally continuous pra and wtda from integrated hydrologic simulation results over 

Europe (hereafter termed TSMP-G2A data set, introduced in Sect. 2.4) in combination with LSTM networks to capture the 

time-varying and time-lagged relationship between pra and wtda in order to obtain reliable prediction models at the 90 

individual pixel level. The impact of local factors on the network behavior was also investigated, and the local factors 

studied were yearly averaged wtd, ET, soil moisture (θ), snow water equivalent (Sw), and soil type (St) and dominant plant 

functional type (PFT). In addition, we implemented XWT on both TSMP-G2A pra and wtda series for time-frequency 

analysis to gain insight into the internal characteristics of the obtained networks. 

This paper is organized as follows: in Sect. 2 (Methodology), we first present a conceptual model of groundwater balance 95 

to theoretically derive the relationship between pra and wtda and then briefly introduce the architecture of the proposed 

LSTM networks, continuous and cross-wavelet transform. This is then followed by detailed information of our study area 
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and data set as well as a generic workflow to construct local LSTM networks at selected pixels over Europe. Section 3 

(Results and discussion) shows reproduced wtda maps for groundwater drought analysis, discusses the impact of local factors 

on the network behaviors and investigates the network performances at the local scale, before completing the paper with 100 

Sect. 4 (Summary and conclusions). 

2 Methodology 

LSTM networks were applied to estimate monthly wtda over the European continent, using monthly pra, as input. We 

constructed the networks at the individual pixels and analyzed temporal patterns between TSMP-G2A pra and wtda using 

XWT. In this section, we briefly recall the conceptual model of groundwater balance, introduce the principle of LSTM 105 

networks and the application of XWT, and describe the study area and data set and a universal workflow to establish the 

proposed LSTM networks locally at selected pixels.  

2.1 Conceptual model of groundwater balance 

The complete subsurface water balance can be described by a control volume that contains the vadose zone, and an 

unconfined aquifer closed at the bottom (Fig. 1). Areas with surface water are not taken into account. Fluxes in and out of 110 

the control volume are pr and ET across the land surface and lateral fluxes in the subsurface. These fluxes are balanced by 

changes in the water stored in the vadose zone and the unconfined aquifer.  

 

Figure 1: Conceptual model of groundwater balance over a control volume. Variables are defined in the text (modified from 

Maxwell, 2010). 115 

The complete groundwater balance equation for the conceptual model is given in Eq. (1): 

𝑑(𝑆𝑣𝑧)/𝑑𝑡 + 𝑑(𝑆𝑢𝑎)/𝑑𝑡 = 𝑃 − 𝐸𝑇 + 𝑑𝑖𝑣(𝑸𝒈) .                                      (1) 

Rearranging Eq. (1), will result in Eq. (2) as follows: 

𝑑(𝑆𝑢𝑎)/𝑑𝑡 = 𝑃 − 𝐸𝑇 + 𝑑𝑖𝑣(𝑸𝒈) − 𝑑(𝑆𝑣𝑧)/𝑑𝑡 ,                                                                 (2) 
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where, 𝑃 is precipitation [LT-1]; and 𝐸𝑇 is actual evapotranspiration [LT-1]; and 𝑑𝑖𝑣(𝑸𝒈) is the divergence of groundwater 120 

[LT-1]; and 𝑆𝑣𝑧 and 𝑆𝑢𝑎 are the water storages in the vadose zone [L] and the unconfined aquifer [L], respectively; and 𝑡 is 

time [T].  

The term on the left-hand side and the first term on the right-hand side in Eq. (2) indicate an explicit relationship between 

the fluctuation of Sua and pr, providing the theoretical basis of this study. In case of large continental watersheds (i.e., 

𝑑𝑖𝑣(𝑸𝒈) = 0), the difference between pr and ET is equal to the total variations in 𝑆𝑣𝑧 and 𝑆𝑢𝑎. Note, we explicitly separated 125 

the water storage term of the vadose zone from the unconfined aquifer to highlight the transient impact of unsaturated 

storage on the relationship between  𝑑(𝑆𝑢𝑎)/𝑑𝑡 and (P-ET). 

2.2 Long Short-Term Memory networks 

In this study, we employed LSTM networks having the same architecture of hidden neurons as Gers et al. (2000). As a 

category of RNNs, LSTM networks have loops in their hidden layers, facilitating hidden neurons to weigh not only new 130 

inputs but also earlier outputs internally for predictions. Hence, they are considered to have memory. Compared with 

standard RNNs, LSTM networks add a constant error carousel (CEC) and three gates that are the input, forget and output 

gates in their hidden neurons (see Fig. 2), in order to overcome the gradient exploring and vanishing issue. For a detailed 

description of the functions of these components, the reader is referred to Hochreiter and Schmidhuber (1997), and Gers et 

al. (2000). Benefiting from the interaction of these components, LSTM networks show great promise in studying long-term 135 

relationships between time series. They have the ability to capture dependencies over 1000 time steps, outperforming 

standard RNNs whose upper boundary of reliable performances is only 10 time steps (Hochreiter and Schmidhuber, 1997; 

Kratzert et al., 2018). 

The procedure for processing inputs in hidden neurons of LSTM networks are as follows (Olah, 2015; Ma et al., 2019): 1) 

filter the information used for prediction from new inputs based on the result of the input gate; 2) filter the information to 140 

remember from the old CEC state according to the output of the forget gate; 3) update the CEC state using the results from 

the previous two steps; 4) compute outputs of hidden neurons from the new CEC state and the results given by the output 

gate. 

Figure 2 illustrates a one-hidden-layer LSTM network containing only one hidden neuron; the pseudocode is presented in 

Appendix A. Owing to limited data available at each pixel (i.e., a total of 252 time steps), we built small LSTM networks at 145 

the local scale, having one input layer, one hidden layer, and one output layer. The network receives monthly pra from the 

input layer, processes it on the hidden layer, and finally generates monthly wtda from the output layer. Numbers of input and 

output neurons are determined by how many input and output variables are used in the derivation of the network. In the 

constructed LSTM networks, only one neuron is located on either the input or output layer, as the number of input or output 

variables is one. Thus, the complexity of the network only depends on the number of hidden neurons and, therefore, can vary 150 

by changing the number of hidden neurons. The architecture of a network plays an important role in its behavior of 
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processing new data, and it can be a double-edged sword to apply a network with considerable hidden neurons. On the one 

hand, the larger we allow a network to grow, the better it can learn from a given data set. On the other hand, a complex 

network easily captures unwanted patterns when it learns too much from the given data set, eliminating its ability to deal 

with previously unobserved information (Dawson and Wilby, 2001; Müller and Guido, 2017). This phenomenon is termed 155 

overfitting. Hence, it is crucial to identify the optimal number of hidden neurons and specify the appropriate structure of the 

network, which is the focus of hyperparameter tuning described in Sect. 2.5. 

 

Figure 2: One-hidden-layer LSTM network with one hidden neuron. The green lines indicate the entry points of new inputs into 

the hidden neuron. The blue lines show the entry points of previous outputs into the hidden neuron, where 𝑤∗ is the weight on a 160 
linkage; ℎ(∗) is the output of the hidden neuron; 𝑥(𝑡) is the input at the time step t; and 𝑐(∗) is the cell state. 𝜎 represents a 

sigmoid function, and tanh is a hyperbolic tangent function. 

2.3 Continuous and cross-wavelet transform 

Continuous wavelet transform (CWT) is a type of wavelet transform useful for feature extraction (Grinsted et al., 2004). 

Given a mother wavelet 𝜓0(𝜂), 𝜂 being a dimensionless time parameter, the CWT of a time series 𝑥𝑛0 is formulated as the 165 

convolution of 𝑥𝑛0 and a scaled and translated form of 𝜓0(𝜂) (Torrence and Compo, 1998): 

𝑊(𝑠, 𝑛) = ∑ 𝑥𝑛0𝜓∗[(𝑛0 − 𝑛)𝛿𝑡 𝑠⁄ ]𝑁−1
𝑛0=0  ,                 (3) 

where, the (*) signifies the complex conjugate; 𝛿𝑡 is the time step of 𝑥𝑛0; N is the total number of 𝛿𝑡 in 𝑥𝑛0; 𝑠 is the wavelet 

scale; and n is the localized time index along which 𝜓0(𝜂) is translated. Here, the wavelet power is defined as |𝑊(𝑠, 𝑛)|2.  
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The mother wavelet must be zero-mean and localized in the time and frequency domains (Torrence and Compo, 1998). In 170 

this study, we applied the Morlet wavelet as the mother wavelet, defined as: 

𝜓0(𝜂) = 𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2 ,                 (4) 

where, 𝜔0 is the dimensionless frequency, set as 6 here to acquire a good balance between time and frequency localization 

(Grinsted et al., 2004). 

XWT is a method to locate common high power in the wavelet transforms of two time series. The XWT of two time series 175 

𝑥𝑛0 and 𝑦𝑛0 can be computed using (Grinsted et al., 2004): 

𝑊𝑥𝑦(𝑠, 𝑛) = 𝑊𝑥(𝑠, 𝑛)𝑊𝑦
∗(𝑠, 𝑛) ,                 (5) 

where, 𝑊𝑥(𝑠, 𝑛) and 𝑊𝑦(𝑠, 𝑛) are the CWT of time series 𝑥𝑛0 and 𝑦𝑛0, respectively. The cross-wavelet power is calculated as 

|𝑊𝑥𝑦(𝑠, 𝑛)|. However, directly using the cross-wavelet power gives biased results of the XWT analysis, so here we applied 

|𝑊𝑥𝑦(𝑠, 𝑛)| 𝑠⁄  proposed by Veleda et al. (2012) for correction. For detailed descriptions about CWT and XWT, the reader is 180 

referred to Torrence and Compo (1998), Grinsted et al. (2004), Prokoph and El Bilali (2008), and Veleda et al. (2012). 

In this study, the application of XWT aims to identify common, localized high-power frequency modes of 𝜓0(𝜂) in input 

and expected output series and detect dynamics of the modes over time. Using the XWT analysis, we expect to clarify 

whether a changing pattern exists in the input-output relationship during the study period and if it affects the network 

behavior. Moreover, by linking the results of the XWT analysis with the network outputs, we explore the impact of the 185 

amount and range of the frequency modes on the LSTM network performance in order to obtain insight into internal 

operations of LSTM networks.  

2.4 Study area and data set 

We constructed the LSTM networks at individual pixels over eight hydrometeorologically different regions within Europe 

(Fig. 3), which are known as the PRUDENCE regions (Christensen and Christensen, 2007). Table 1 lists region names and 190 

abbreviations, coordinates, and climatologic information. The climatology is represented by regional averages and standard 

deviations of yearly averaged data derived from the TSMP-G2A data set (Furusho-Percot et al., 2019) from the years 1996 to 

2016, except for Sw of which data are only available from the years 2003 to 2010. The TSMP-G2A data set consists of daily 

averaged simulation results from the Terrestrial Systems Modeling Platform (TSMP) over Europe, using the grid definition 

from the COordinated Regional Downscaling Experiment (CORDEX) framework with a spatial resolution of 0.11° (12.5 195 

km, EUR-11). TSMP is a fully coupled atmosphere-land-surface-subsurface modeling system, giving a physically consistent 

representation of the terrestrial water and energy cycle from the groundwater via the land surface to the top of the 

atmosphere (Keune et al., 2016; Furusho-Percot et al., 2019). TSMP has been successfully applied in many studies to 

simulate the terrestrial hydrological processes, e.g., Shrestha et al.  (2014), Kurtz et al. (2016), Sulis et al. (2018) and Keune 

et al. (2019). Furusho-Percot et al. (2019) compared simulated anomaly data of temperature, pr, and total column water 200 

storage from TSMP with commonly used reference datasets (i.e., the 0.25 degrees gridded European Climate Assessment 
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and Dataset, E-OBS v19, ECA&D, and observations from the Gravity Recovery and Climate Experiment, GRACE), 

showing good agreement between the simulated and observed values. For details of the TSMP-G2A data set, the reader is 

referred to Furusho-Percot et al. (2019). 

 205 

Figure 3: TSMP-G2A wtd [m] climatology over the European continent for the time period 1996 to 2016. Areas bounded by the 

thick black lines show the PRUDENCE regions (i.e., SC: Scandinavia; BI: British Isles; ME: Mid-Europe; EA: Eastern Europe; 

FR: France; AL: Alps; IB: Iberian Peninsula; MD: Mediterranean). 

As shown by the averages in Table 1, pr is heterogeneously distributed over the PRUDENCE regions, with the highest 

rainfall in AL (1480 mm) and the lowest in EA (778 mm). Most regional average wtd ranges from 2 m to 4 m, other than IB 210 

and MD (having a larger average wtd > 6 m). Within this range, AL has a relatively high average wtd (3.95 m) due to its 

strong relief. Higher ET is naturally observed in more arid regions, e.g., the highest regional average ET (518 mm) is 

recorded in MD. No significant difference is observed in regional average θ over PRUDENCE regions, and the minimal 

regional average θ is observed in IB (0.28 m3m-3) and MD (0.29 m3m-3).  For Sw, large values (> 60 mm) are simulated in SC 

and AL, while values below 10 mm are recorded in the other regions.  215 

 

Table 1: Overview of the PRUDENCE regions, including region names and abbreviations, coordinates, and climatologic 

information extracted from the TSMP-G2A data set (expressed as average ± standard deviation). 

Area 

Coordinate 

(lon_west, lon_east, 

lat_south, lat_north) 

Regional 

precipitation, pr  

[mm] 

Regional 

water table 

depth, wtd 

[m] 

Regional 

evapotranspiration

, ET  

[mm] 

Regional 

soil 

moisture, θ 

[m3m-3]  

Regional snow 

water 

equivalent, Sw 

[mm] 

(SC) Scandinavia (5, 30, 55, 70) 1007 ± 454 2.32 ± 5.56 283 ± 129 0.31 ± 0.11 79.80 ± 109.17 

(BI) British Isles (-10, 2, 50, 59) 1120 ± 308 2.18 ± 5.83 395 ± 130 0.34 ± 0.10 0.82 ± 2.19 
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(ME) Mid-Europe (2, 16, 48, 55) 896 ± 211 2.64 ± 6.55 444 ± 141 0.33 ± 0.10 2.44 ± 5.49 

(EA) Eastern Europe (16, 30, 44, 55) 778 ± 187 2.94 ± 7.03 470 ± 164 0.32 ± 0.10 9.50 ± 13.07 

(FR) France (-5, 5, 44, 50) 895 ± 171 2.82 ± 6.72 485 ± 164 0.33 ± 0.09 0.31 ± 1.12 

(AL) Alps (5, 15, 44, 48) 1480 ± 644 3.95 ± 8.75 499 ± 185 0.34 ± 0.09 65.57 ± 127.23 

(IB) Iberian Peninsula (-10, 3, 36, 44) 841 ± 372 6.32 ± 10.13 495 ± 233 0.28 ± 0.11 3.38 ± 28.18 

(MD) Mediterranean (3, 25, 36, 44) 896 ± 340 6.19 ± 10.27 518 ± 229 0.29 ± 0.10 3.59 ± 15.22 

 

We utilized the TSMP-G2A data set to compute pra and wtda (Eqs. (6)-(7)), which are the input and output data of the 220 

proposed LSTM networks. The associated average and standard deviation values are based on the training set (i.e., the data 

within the years 1996 to 2012, described in Section 2.5) to guarantee that no future information leaks into the networks in the 

training process.  

𝑝𝑟𝑎 = (𝑝𝑟𝑚 − 𝑝𝑟𝑎𝑣)/𝑝𝑟𝑠𝑑 ,                                              (6)  

where, 𝑝𝑟𝑚  is monthly sum pr calculated from the TSMP-G2A data set; 𝑝𝑟𝑎𝑣  is the climatological average of 𝑝𝑟𝑚  (i.e., 225 

averages of 𝑝𝑟𝑚 in January, February, …, December); 𝑝𝑟𝑠𝑑  is the climatological standard deviation of 𝑝𝑟𝑚. 

𝑤𝑡𝑑𝑎 = (𝑤𝑡𝑑𝑚 − 𝑤𝑡𝑑𝑎𝑣)/𝑤𝑡𝑑𝑠𝑑 ,                                             (7) 

where, 𝑤𝑡𝑑𝑚 is monthly average wtd derived from the TSMP-G2A data set; 𝑤𝑡𝑑𝑎𝑣  is the climatological average of 𝑤𝑡𝑑𝑚; 

𝑤𝑡𝑑𝑠𝑑  is the climatological standard deviation of 𝑤𝑡𝑑𝑚. 

To identify the effect of local factors on the network behaviors, we categorized the network performances based on yearly 230 

averaged wtd, ET, θ, Sw, and St and dominant PFT. The data of θ were calculated based on the information at a depth from 0 

to 5 cm below the land surface. It is important to note that the data used in this study cover the years 1996 to 2016 (except 

for Sw data only available from 2003 to 2010), to ensure that spinup effects do not impact the analyses (Furusho-Percot et al., 

2019). 

2.5 Experiment design 235 

LSTM networks are employed here to detect connections between pra and wtda from the pan-European simulation results 

and utilize pra as input to predict wtda. At each time step, one new input enters a network, together with information stored in 

the network’s memory (i.e., useful messages from inputs in the past), to generate outputs. Therefore, LSTM networks have 

the ability to handle the lagged response of wtd to pr.  

Monthly anomaly time series at individual pixels were divided into three parts for network training (01/1996–12/2012), 240 

validation (01/2013–12/2014), and testing (01/2015–12/2016) containing about 80%, 10%, and 10% of the total data, 

respectively. In training, the network is fitted to a given training set by adjusting its weights and biases. The technique of 

adjusting network parameters is called an optimizer that minimizes a cost function at a certain learning rate (Govindaraju, 

2000). This study utilized a supervised training algorithm with a supplementary teacher signal (i.e., TSMP-G2A monthly 

wtda) to guide the training process, which is widely adopted in Hydroscience in case of e.g., stream stage modeling (Sung et 245 
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al., 2017), stream discharge modeling (Zhang et al., 2015) and groundwater level modeling (Adamowski and Chan, 2011). 

One common challenge in the training process is overfitting. Validation is a process to address overfitting by comparing the 

network output with the teacher signal to obtain a validation loss (Govindaraju, 2000; Liong et al., 2000). Provided that the 

network has gained sufficient knowledge from the training set, training ceases when the number of epochs (i.e., an iteration 

when the whole training set travels through the network forward and backward once) is ≥ 50 and the validation loss starts 250 

increasing. The strategy to stop training based on validation losses is termed early stopping. 

Moreover, the validation losses were applied to tune hyperparameters of the LSTM networks whose architecture has been 

introduced in Sect. 2.2. To simplify the procedure of hyperparameter tuning, we only focused on the optimization of the 

number of hidden neurons in this study and set other hyperparameters constant (Table 2). The networks with hidden neurons 

from 1 to 100 were trained at individual pixels, and the best three of them were selected for testing based on the validation 255 

losses. 

 

Table 2: Hyperparameter settings of the proposed LSTM networks. 

Hyperparameter Value or method 

Number of input, hidden, and output layer(s) (1, 1, 1) 

Number of input, hidden and output neuron(s) (1, 1-100, 1) 

Initial weights and biases of all neurons U(-0.5, 0.5)* 

Initial cell states of LSTM neurons 0 

Optimizer, learning rate  RMSprop (Hinton et al., n.d.), 0.001 

Loss function Mean Square Error (MSE) 

* U(-0.5, 0.5):  uniform distribution bounded by -0.5 and 0.5. 

 

Finally, during testing, the optimally trained networks were provided with a previously unknown data set, originating from 260 

the same source as the training set. The difference between generated and target values during testing is called the 

generalization error, representing the ability of a network to perform on previously unobserved data. The average of the three 

optimal network results was utilized for evaluation in order to moderately eliminate individual deficiencies of the selected 

networks, thereby improving the quality of the final results (Goodfellow et al., 2017; Brownlee, 2018). The metrics to assess 

network performance in this study are the root mean square error (RMSE), the coefficient of determination (R2) and the bias 265 

from the Pearson product-moment correlation coefficient R (α) as shown in Eqs. (8)-(10), respectively. α indicates 

systematic additive and multiplicative biases in the generated values, having a value between 0 and 1, where α = 1 means no 

bias (Duveiller et al., 2016). 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑔𝑒𝑛𝑒)
2𝑁

𝑖=1 /𝑁 ,                 (8) 

𝑅2 = 1 − ∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑔𝑒𝑛𝑒)
2𝑁

𝑖=1 / ∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅)2𝑁
𝑖=1 ,                (9) 270 
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𝛼 = 2  [𝜎𝑦𝑒𝑥𝑝
𝜎𝑦𝑔𝑒𝑛𝑒

⁄ + 𝜎𝑦𝑔𝑒𝑛𝑒
𝜎𝑦𝑒𝑥𝑝

⁄ + (𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅ − 𝑦𝑔𝑒𝑛𝑒̅̅ ̅̅ ̅̅ ̅)
2

(𝜎𝑦𝑒𝑥𝑝
𝜎𝑦𝑔𝑒𝑛𝑒

)⁄ ]⁄ ,                                       (10) 

where, 𝑦𝑒𝑥𝑝, 𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅, 𝜎𝑦𝑒𝑥𝑝
are the expected value, the average of the expected values, and the standard deviation of the expected 

values, respectively; 𝑦𝑔𝑒𝑛𝑒 , 𝑦𝑔𝑒𝑛𝑒̅̅ ̅̅ ̅̅ ̅, 𝜎𝑦𝑔𝑒𝑛𝑒
 are the generated value, the average of the generated values, and the standard 

deviation of the generated values, respectively; 𝑁 is the number of time steps in the given time series. 

Repeating the above network training, validation, and testing processes (right panel of Fig. 4), we constructed the 275 

proposed LSTM networks locally at ≤ 200 pixels randomly selected in each group in order to save computing time. As 

described in Sect. 2.4, climatologic differences occur not only between different PRUDENCE regions but also at certain 

pixels in the same region, which potentially explains varying network performances at individual pixels. To analyze the 

network reaction to local factors, we categorized the pixels into various groups based on yearly averaged wtd, ET, θ, Sw, and 

St and dominant PFT (Table 3), and the analysis result will be presented in Sect. 3.2. Figure 4 gives a generic workflow of 280 

this study to establish the LSTM networks at the local scale and analyze their output. 

 

Figure 4: Workflow for LSTM network setup over the European CORDEX domain. The left section represents the overall 

processes of the network setup, whereas the right section shows how to apply LSTM networks at a selected pixel. The dash lines 

with arrows indicate additional data transmission paths.  285 

 

 

 

https://doi.org/10.5194/hess-2020-382
Preprint. Discussion started: 24 August 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

Table 3: Value ranges of yearly averaged wtd, ET, θ, Sw, and St and dominant PFT for categorization. 

Yearly averaged 

water table 

depth, wtd  

[m] 

Yearly averaged 

evapotranspiration, 

ET  

[mm] 

Yearly averaged 

soil moisture, θ 

[m3m-3] 

Yearly 

averaged 

snow water 

equivalent, Sw 

[mm] 

Soil type, St  
Dominant plant functional type, 

PFT* 

1) 0.0–1.0; 

2) 1.0-2.0; 

3) 2.0-3.0; 

4) 3.0-4.0; 

5) 4.0-5.0; 

6) 5.0-6.0; 

7) 6.0-7.0; 

8) 7.0-8.0; 

9) 8.0-9.0; 

10) 9.0-10.0; 

11) 10.0-50.0. 

1) < 0.0; 

2) 0.0-100.0; 

3) 100.0-200.0; 

4) 200.0-300.0; 

5) 300.0-400.0; 

6) 400.0-500.0; 

7) 500.0-600.0; 

8) 600.0-700.0; 

9) 700.0-800.0; 

10) 800.0-900.0; 

11) 900.0-1000.0; 

12) 1000.0-1100.0. 

1) 0.0-0.05; 

2) 0.05-0.10; 

3) 0.10-0.15; 

4) 0.15-0.20; 

5) 0.20-0.25; 

6) 0.25-0.30; 

7) 0.30-0.35; 

8) 0.35-0.40; 

9) 0.40-0.45; 

10) 0.45-0.50. 

1)  ≤ 10.0 

2) > 10.0 

1) Sand; 

2) loamy sand; 

3) sandy loam; 

4) silt loam; 

5) silt; 

6) loam; 

7) sandy clay 

loam; 

8) silty clay 

loam; 

9) clay loam; 

10) sandy clay; 

11) silty clay; 

12) clay; 

13) organic 

material; 

14) water; 

15) bedrock; 

16) others. 

1) Needleleaf evergreen 

temperate tree; 

2) needleleaf evergreen boreal 

tree; 

3) needleleaf deciduous boreal 

tree; 

4) broadleaf evergreen tropical 

tree; 

5) broadleaf evergreen 

temperate tree; 

6) broadleaf deciduous tropical 

tree; 

7) broadleaf deciduous 

temperate tree; 

8) broadleaf deciduous boreal 

tree; 

9) broadleaf evergreen shrub; 

10) broadleaf deciduous 

temperate shrub; 

11) broadleaf deciduous boreal 

shrub; 

12) c3 arctic grass; 

13) c3 non-arctic grass; 

14) c4 grass; 

15) corn; 

16) wheat. 

*Dominant PFT: the PFT of which percentage is ≥ 50% at a pixel. 
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3 Results and discussion 290 

3.1 Water table depth anomaly maps in 2003 and 2015 reproduced by the LSTM network results 

We employed the outputs of the proposed LSTM networks to reproduce wtda over the European continent in 2003 and 2015, 

constituting drought years (Van Loon et al., 2017). Figure 5 presents reproduced wtda maps over Europe for August 2003 

and August 2015. The year 2003 is included in the training period, and as a result, the drought map derived from the wtda 

modeled from the networks (hereafter called LSTM wtda) is almost identical to the one based on the TSMP-G2A wtda (Fig. 295 

5a). Apparently, a groundwater drought (i.e., wtda ≥ 1.5) covered large parts of Europe, which is in good agreement with 

previous studies (Andersen et al., 2005; Van Loon et al., 2017). In the simulation, over central Germany, central Britain, 

southeastern France, the west Iberian Peninsula, and several parts in Eastern Europe, groundwater storage increased, 

illustrating the strong spatial heterogeneity of the anomalies, which is expected. In contrast, the year 2015 is part of the 

testing period, leading to a reduced agreement between the LSTM and TSMP-G2A wtda (Fig. 5b). Especially extremes in 300 

wet and dry anomalies were underestimated suggesting that the training set contains too little information on extreme events 

and, thus, is too short. Yet overall, visual inspection of Fig. 5b shows that the LSTM anomalies agree well with the expected 

values spatially, lending confidence in the trained networks to predict wtda from pra information. Additional European wtda 

maps for the second half of 2003 and 2015 are shown in Appendix B, leading to similar conclusions regarding the ability of 

the LSTM results to reproduce TSMP-G2A wtda.  305 
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Figure 5: European wtda maps for (a) August 2003; (b) August 2015, derived from the TSMP-G2A data set (left) and results from 

LSTM networks (right). 

3.2 Impact of local factors on the network performance 

In each PRUDENCE region, we computed averages, and standard deviations of the test R2 scores and RMSEs for the 310 

different categories (Table 3) of yearly averaged wtd, ET, θ, Sw, and St and dominant PFT (Fig. 6), to study dependents of the 

network test performances on different local factors. Note that negative values were set to zero in this calculation. 
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Figure 6: Averages and standard deviations of the test R2 scores (left) and RMSEs (right) over the categorized results: yearly 

averaged (a) wtd; (b) ET; (c) θ; (d) Sw. The averages are indicated as dots, while the bars indicate standard deviations. The 315 
different colors reflect test results in different PRUDENCE regions.  

There was no significant influence of St and dominant PFT on the scores. In general, the performance decreased with 

increasing yearly averaged wtd, which was manifested by decreasing average R2 scores and growing average RMSEs (Fig. 

6a). This type of network behavior can be attributed to a stronger connection of groundwater to pr in shallow aquifers, which 

is intuitive. In contrast to the impact of yearly averaged wtd on the test performance, the performance was positively 320 

correlated to yearly averaged ET and θ. With increasing yearly averaged ET (Fig. 6b) or θ (Fig. 6c), there was an increase of 
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average R2 scores and a decrease of average RMSEs. We can explain this phenomenon by the overlap between low-wtd and 

high-ET (or high-θ) areas over Europe. We also discovered that yearly averaged Sw played an important role in the network 

test performance. In most PRUDENCE regions, the performance decreased in the case of Sw, leading to smaller average R2 

scores and larger average RMSEs presented in Fig. 6d. Snow accumulation resulted in complex feedback with groundwater 325 

processes that cannot be captured well by the networks without including additional input information. 

As mentioned in Sect. 2.4, we only used the training set to calculate the climatological average and standard deviation in 

order to prevent the networks from incorporating future information in the training process. However, some extreme values 

in the validation and test sets may exceed the range of the training set resulting in decreased validation and test 

performances, suggesting that a varying pattern may exist between pra and wtda over the study period (see Sect. 3.3). 330 

Due to differences in the hydrometeorological characteristics of the PRUDENCE regions (see Table 1), the strength of the 

relationship between pra and wtda differed regionally (Fig. 6), leading to various regional test performances of the proposed 

LSTM networks shown in Fig. 7. Table 4 provides percentages of the selected pixels with test R2 ≥ 50% in each region, 

where FR exhibits the overall best network performance. Reduced performance in other regions appeared to be mainly 

related to high Sw in SC and AL and generally large wtd in IB and MD. 335 

 

Figure 7: Map of test R2 scores achieved by the proposed LSTM networks in the PRUDENCE regions.   

 

Table 4: Percentages of the studied pixels with a test R2 score ≥ 50% in the PRUDENCE regions [%]. 

SC BI ME EA FR AL IB MD 

14.08 30.77 39.30 27.27 52.84 30.30 22.46 16.33 

 340 
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We extended the scope of the analyses to the entire study period, and found that the performance of individual networks 

generally followed three combinations with respect to training and test scores that are: 

• C1: training R2 score ≥ 50%, test R2 score ≥50%; 

• C2: training R2 score ≥ 50%, test R2 score ≤ 0%; 

• C3: training R2 score ≤ 0%, test R2 score ≤ 0%. 345 

The data distribution in the training and test sets was expected to be analogous, and if the networks did not encounter 

overfitting during training, their test performance increased by the improvement of the training performance, and vice versa 

(C1 and C3). C1 is the network behavior with satisfactory training and test scores. In contrast, in the case of C3, training and 

testing scores were unsatisfactory. An exception is C2, in which the networks that performed well on the training set failed to 

perform during testing. Significantly reduced test performance in C2 can be attributed to the hypothesis that the pattern 350 

between pra and wtda varied over the study period.   

The distribution of the performance combinations was influenced by local factors. Figure 8 illustrates percentages of the 

pixels where the network performance followed C1 to C3 categorized by region, yearly averaged wtd, ET, θ and Sw, 

respectively. Each combination was required to have ≥ 50 study pixels. C1 was mainly found in areas with shallow wtd, high 

ET, high θ and little Sw, and was also the most common network performance in FR. In contrast, C2 mostly appeared in areas 355 

with large wtd, small ET and heavy Sw. This was a typical network performance at pixels with negative ET in SC, where 

processes such as freezing and sublimation were more pronounced than others due to low temperature. In addition, C3 

appeared in a few pixels with wtd ≥ 10 m. 
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Figure 8: Histograms showing percentages of pixels where the network performance followed the combinations (a) C1; (b) C2; (c) 360 
C3. The plots show the combinations categorized by region, yearly averaged wtd, ET, θ, Sw, from left to right, respectively. 

3.3 Cross-wavelet transform (XWT) analysis 

In the previous section, we posed the hypothesis that the temporal pattern between pra and wtda during training, validation, 

and testing was different at a number of pixels over the European continent. XWT was employed here for hypothesis testing 

at individual, representative pixels (Pixels 1-3, Table 5). XWT extracted the time localized coherence of the variability in the 365 

pra and wtda time series derived from the TSMP-G2A data set (i.e., TSMP-G2A pra and wtda) at these pixels. The α values 

(Eq. (10)) of Pixel 1 were generally suggesting that smaller biases existed in the results of the LSTM networks. In addition, 

we found very different α values for Pixel 2 with small biases in the training and large biases in the validation and testing. 

The α values of Pixel 3 were generally small, indicating that the biases were large in the case of C3.  

 370 

 

 

 

 

 375 
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Table 5: Pixel characteristics in the XWT analysis (Pixels 1-3). 

 
Performance 

combination 
Region 

Yearly 

averaged water 

table depth, 

wtd [m] 

Yearly averaged 

evapotranspiration, 

ET [mm] 

Yearly 

averaged soil 

moisture, θ 

[m3m-3] 

Yearly average 

snow water 

equivalent, Sw 

[mm] 

Pixel 1 C1 FR 1.32 422.91 0.27 0.0 

Pixel 2 C2 SC 4.95 -24.41 0.15 535.0 

Pixel 3 C3 MD 33.20 208.62 0.14 3.0 

 

 
Training R2 

[%] 
Training α [%] 

Validation R2 

[%] 

Validation α 

[%] 
Test R2 [%] Test α [%] 

Pixel 1 73.20 70.71 66.43 47.07 74.94 70.08 

Pixel 2 61.64 70.55 -66.38 7.27 -485.04 21.45 

Pixel 3 -0.23 1.75 -30.63 3.89 -260.14 2.28 

 

Figure 9 shows the results of the XWT analyses of the selected pixels in combination with the corresponding TSMP-G2A 

pr and wtd time series. Inspecting the results of the XWT analyses (bottom panel of Fig. 9), the concentration period of 380 

power was inconsistent in the area without edge effects (i.e., the area within the black dashed line) at Pixel 2 from the time 

period 1996 to 2016, indicating a time-varying pattern between pra and wtda at the pixel, thus supporting our hypothesis. It 

also explores the high sensitivity of LSTM networks to outliers, which is a major defect of such data-driven models, so 

physically-based models cannot be completely replaced by data-driven models in this sense.  

The power in the XWT results at Pixel 1 and Pixel 3 (Figs. 9a and 9c) was both nearly consistently located in a certain 385 

period, indicating an analogous pattern between pra and wtda throughout the whole study period, which is the prerequisite of 

good network performances. However, the networks behaved differently at the two pixels. By linking the XWT results to the 

associated network performances, we found that the networks tended to perform well when most of the power in the XWT 

results was consistently concentrated in the period from 2 to 16 months during the study period (see Fig. 9a). Supplementary 

plots in Appendix C showed similar phenomena as above. Therefore, we speculate that LSTM networks might be frequency-390 

aware and work well on high-frequency components. 
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Figure 9: -TSMP-G2A pra, TSMP-G2A wtda and LSTM wtda time series (top) as well as cross-wavelet spectra for TSMP-G2A pra 

and wtda series (bottom) at a representative pixel of the performance combination (a) C1; (b) C2; (c) C3. In the cross-wavelet 

spectra, the black dashed line marks the boundary of the cone of influence; the color bar presents 𝑙𝑜𝑔2(𝑝𝑜𝑤𝑒𝑟/𝑠𝑐𝑎𝑙𝑒) . In all plots, 395 
the two green dashed lines separate the study period into the training, validation and testing periods. 

4 Summary and conclusions 

In this study, we proposed LSTM networks as an indirect method to model monthly wtda over the European continent, using 

monthly pra as input. Local LSTM networks were constructed at individual pixels randomly selected over Europe to capture 

the time-varying, and time-lagged relationship between pra and wtda from integrated hydrologic simulation (TSMP-G2A) 400 

results covering 1996 to 2018 episode. The monthly anomaly series derived from the TSMP-G2A data set were divided into 

three sections at each pixel for network training, validation, and testing. Using the output of the LSTM networks, we 

successfully reproduced TSMP-G2A wtda maps over Europe for drought months in both the training and testing period (e.g., 

August 2003 and August 2015). The good agreement between the TSMP-G2A and LSTM wtda maps demonstrated the 

ability of the trained networks to model wtda from pra data. The results highlighted the impact of local factors on the network 405 

test performance, manifested by R2 scores and RMSEs. Most of the networks attained high test R2 scores at the pixels with 

wtd < 3 m, ET > 200 mm, θ > 0.15 m3m-3 and Sw < 10 mm, where a stronger connection existed between pra and wtda. Also, 

the various hydrometeorological characteristics in each PRUDENCE region resulted in regional differences in the test 
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performance of the proposed networks, with FR showing the overall best network performance. In some regions, test 

performance deteriorated due to changing temporal patterns in the pra-wtda relationship, approved by XWT analyses. 410 

According to the results of the XWT analyses, we gave a hypothesis that LSTM networks have frequency awareness and 

tend to perform well on high-frequency components.  

We also recognized that the limited amount of data in the training introduces uncertainties in the network performances. 

Any potential extension of training data may lead to a significant improvement in the quality of the derived networks. In 

addition, hyperparameters of the proposed LSTM networks may be further tuned at the individual pixel level to improve 415 

network performance. The results suggest that LSTM networks are useful to estimate wtda time series based on pra, which are 

routinely measured and, therefore, are more easily available from e.g., atmospheric re-analyses and forecast data sets and 

observations than groundwater level measurements. The proposed methodology may be transferred into a real-time 

monitoring and forecasting workflow for wtda at the continental scale. 

 420 

Code and data availability. The code for constructing the proposed LSTM networks and result analyses is available from the 

authors. Please contract Yueling Ma at y.ma@fz-juelich.de. The TSMP-G2A data set is available online at 

https://doi.org/10.17616/R31NJMH3 (Furusho-Percot et al., 2019). 
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Appendix A: Pseudocode of the LSTM network displayed in Fig. 2 440 

Hereafter gives pseudocode of the one-hidden-layer LSTM networks illustrated in Fig. 2, which is modified from Gers et al. 

(2000). Variables were defined in the caption of Fig. 2. Note that, to simplify the code, biases are not shown here. 

 

RESET all network parameters (i.e., weights, biases and cell states) as listed in Table 2 

REPEAT learning loop 445 

    forward pass 

        for t = 1, 2, … 

                network input to the hidden layer (self-recurrent and from input): 

                input gate: 𝑛𝑒𝑡𝑖𝑛(𝑡) = 𝑤𝑖𝑛𝑥(𝑡) + 𝑤𝑖𝑛ℎℎ(𝑡 − 1) 

                forget gate: 𝑛𝑒𝑡𝑓𝑜𝑟𝑔𝑒𝑡(𝑡) = 𝑤𝑓𝑜𝑟𝑔𝑒𝑡𝑥(𝑡) + 𝑤𝑓𝑜𝑟𝑔𝑒𝑡ℎℎ(𝑡 − 1) 450 

                output gate: 𝑛𝑒𝑡𝑜𝑢𝑡(𝑡) = 𝑤𝑜𝑢𝑡𝑥(𝑡) + 𝑤𝑜𝑢𝑡ℎℎ(𝑡 − 1) 

                cell: 𝑛𝑒𝑡𝑐(𝑡) = 𝑤𝑐𝑥(𝑡) + 𝑤𝑐ℎℎ(𝑡 − 1) 

           activations in the hidden layer: 

                input gate: 𝑖(𝑡) = 𝜎(𝑛𝑒𝑡𝑖𝑛(𝑡)) 

                forget gate: 𝑓(𝑡) = 𝜎(𝑛𝑒𝑡𝑓𝑜𝑟𝑔𝑒𝑡(𝑡)) 455 

                output gate: 𝑜(𝑡) = 𝜎(𝑛𝑒𝑡𝑜𝑢𝑡(𝑡)) 

                cell’s internal state: 

                𝑐(0) = 0, 𝑐(𝑡) = 𝑓(𝑡)𝑐(𝑡 − 1) + 𝑖(𝑡)𝑔(𝑡), where 𝑔(𝑡) = tanh(𝑛𝑒𝑡𝑐(𝑡)) 

                Cell’ s activation: ℎ(𝑡) = 𝑜(𝑡)tanh(𝑐(𝑡)) 

           Output of the network: 460 

                𝑛𝑒𝑡(𝑡) = 𝑤𝑛𝑒𝑡ℎ(𝑡), out(t) = net(t) 

  backward pass if error injected 

      for t = n, n-1, … 

           use RMSprop optimization algorithm (Hinton et al., n.d.) 

UNTIL validation error begins to drop and number of epochs ≥ 50 465 
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Appendix B: Supplementary European water table depth anomaly maps  

 

Figure B1: European wtda maps for (a) July 2003; (b) July 2015, derived from the TSMP-G2A data set (left) and results from 

LSTM networks (right). 
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 470 

Figure B2: European wtda maps for (a) December 2003; (b) December 2015, derived from the TSMP-G2A data set (left) and 

results from LSTM networks (right). 

Appendix C: Results of the cross-wavelet transform (XWT) analysis at additional pixels  

Table C1: Pixel characteristics in the XWT analysis (Pixels 4-6). 

 
Performance 

combination 
Region 

Yearly 

averaged water 

table depth, 

wtd [m] 

Yearly averaged 

evapotranspiration, 

ET [mm] 

Yearly 

averaged soil 

moisture, θ 

[m3m-3] 

Yearly average 

snow water 

equivalent, Sw 

[mm] 

Pixel 4 C1 FR 1.01 418.39 0.29 0.0 

Pixel 5 C2 IB 6.15 153.92 0.16 0.0 

Pixel 6 C3 ME 22.59 213.96 0.19 11.0 
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Training R2 

[%] 
Training α [%] 

Validation R2 

[%] 

Validation α 

[%] 
Test R2 [%] Test α [%] 

Pixel 4 86.42 68.88 66.94 26.02 76.62 84.86 

Pixel 5 83.74 68.76 -0.8 5.85 -742.21 4.81 

Pixel 6 -8.00 43.34 20.55 31.52 -267.45 6.51 

 

 

Figure C1: -TSMP-G2A pra, TSMP-G2A wtda and LSTM wtda time series (top) as well as cross-wavelet spectra for TSMP-G2A pra 

and wtda series (bottom) at (a) Pixel 4; (b) Pixel 5; (c) Pixel 6. The lines have the same definitions as Fig. 9. 
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